728x90
반응형

안녕하세요! 오늘은 원신 나무위키에 플레이어블 캐릭터성유물 카테고리의 글을 크롤링하는 코드에 대해 포스팅 진행하겠습니다.

해당 포스팅에서는 전체 코드와 결과물 이미지만 첨부합니다.

크롤링의 자세한 과정은 추후에 포스팅 진행하도록 하겠습니다.

 

해당 크롤링은 원신 각 캐릭터의 성유물 추천 옵션과 세트를 빠르게 파악하기 위한 데이터 수집을 목적으로 하고 있습니다!

나무위키에서 수집할 정보는 아래와 같습니다.

※ 사진 속 정보는 나히다를 예시로 한 것입니다.

1. 캐릭터의 이름, 속성, 무기

 

2. 권장 성유물 옵션

 

3. 추천 성유물 세트 및 설명

 

4. 성유물 이름, 세트 효과, 획득처

 

  • 크롤링 진행 방식

크롤링은 총 3개의 코드로 진행을 합니다.

 

  • 첫 번째 코드
  1. 원신 캐릭터의 상세 정보가 담긴 링크를 전부 긁어옵니다.
  2. 캐릭터의 이름과 링크만 저장하여 하나의 엑셀 파일로 저장합니다.
  • 두 번째 코드
  1. 첫 번째 코드에서 저장한 엑셀 파일에서 각 캐릭터의 상세 정보 링크를 가져옵니다.
  2. 캐릭터의 속성, 무기, 권장 성유물 옵션, 추천 성유물 세트 및 상세 설명의 내용을 가지고 옵니다.
  3. 캐릭터의 이름, 속성, 무기 권장 성유물 옵션을 저장하여 하나의 엑셀 파일로 저장합니다.
  4. 캐릭터의 이름, 추천 성유물 세트, 상세 설명을 저장하여 하나의 엑셀 파일로 저장합니다.

엑셀 파일을 두 개로 나눈 이유는 이후에 원신 캐릭터 성유물을 조회하는 엑셀 파일을 쉽게 만들기 위해서 입니다!

  • 세번째 코드
  1. 성유물 세트 이름, 2세트, 4세트, 획득처의 내용을 가지고 옵니다.
  2. 획득처에서 비경의 이름을 분리합니다.
  3. 성유물 세트 이름, 2세트, 4세트, 획득처, 비경의 이름을 저장하여 하나의 엑셀 파일로 저장합니다.

비경 이름을 분리한 이유는 이후 원신 캐릭터 성유물을 조회하는 엑셀 파일을 쉽게 만들기 위해서 입니다!

 

[실제 코드 및 결과물]

  • 첫 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *

# 원신/캐릭터 나무위키 링크
link = 'https://namu.wiki/w/%EC%9B%90%EC%8B%A0/%EC%BA%90%EB%A6%AD%ED%84%B0'

# 나무위키는 BeautifulSoup이 먹히지 않기 때문에 동적 크롤링으로 진행
driver = webdriver.Chrome('chromedriver.exe')
driver.get(link)
time.sleep(3)

# '원소별' 버튼 클릭
button = list(driver.find_elements(By.CLASS_NAME, "_3xTXXXtF"))
button[1].click()
time.sleep(3)

Character = pd.DataFrame({'캐릭터 이름' : [], '링크' : []})

character_info = driver.find_elements(By.CLASS_NAME, "s3zppxXT")

for i in range(len(character_info)) :
    character = character_info[i]
    # 캐릭터 이름만 담기 위해서 데이터를 정제하는 부분
    # 캐릭터의 소개가 끝나는 부분
    if character.text == '취소선' :
        break
    # 주인공 캐릭터인 아이테르와 루미네는 데이터 수집에서 제외
    # 캐릭터 이름이 아닌데, 들어온 정보는 모두 제외
    if character.text == '' or  '원신' in character.text or '아이테르' in character.text or character.text in ['불', '물', '바람', '번개', '풀', '얼음', '바위'] :
        pass
    else :
    	# 캐릭터의 이름
        name = character.text
        # 캐릭터의 이름이 길 경우, 엔터로 구분이 되어있기 때문에 이를 띄어쓰기로 변경
        if '\n' in name :
            name = name.replace('\n', ' ')
        Char = [name, str(character.get_attribute('href'))]
        Character.loc[i] = Char

with pd.ExcelWriter('genshin_link.xlsx') as writer :
    Character.to_excel(writer, sheet_name='링크', index=False)

 

  • 첫 번째 코드 결과물

 

  • 두 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *

# 캐릭터의 이름과 상세정보 링크가 담긴 엑셀 파일
link = pd.read_excel('genshin_link.xlsx')
Main_link = list(link['링크'])
Character = list(link['캐릭터 이름'])

Information = pd.DataFrame({'캐릭터 이름' : [], '무기' : [], '시간의 모래' : [], '공간의 성배' : [], '이성의 왕관' : [], '부옵션' : []})
Relic_Information = pd.DataFrame({'캐릭터 이름' : [], '성유물' : [], '평가': []})

driver = webdriver.Chrome('chromedriver.exe')

# 엑셀 전체 인덱스를 의미
# 저장할 엑셀이 두 개이기 때문에 인덱스도 두 개가 필요
total_index = 0
relic_index = 0

# 특정 캐릭터의 상세정보에서 오류가 발생할 경우을 대비
try :
    for k in range(len(Main_link)) :
        driver.get(Main_link[k])
        time.sleep(3)
        
        # 캐릭터의 무기 수집 과정
        attack = driver.find_elements(By.CLASS_NAME, 'cIflhYhI')
        for i in range(len(attack)) :
            if '무기' == attack[i].text :
                attack_index = i+1
                break
        weapon = attack[attack_index].text
        
        # 캐릭터의 성유물 수집 과정
        info = driver.find_elements(By.CLASS_NAME, 'D7SMSdcV')
        for i in range(len(info)) :
        	# 권장 성유물 옵션을 파악하기 위해 위치를 저장
            if '권장 성유물' in info[i].text :
                index = i
                break
        # 권성유물의 정보가 담긴 공간
        sung = info[index]
        
        # 권장 성유물 옵션 수집 과정
        options = sung.find_elements(By.CLASS_NAME, 'cIflhYhI')
        Option = [Character[k], weapon]
        for j in range(len(options)) :
        	# 권장 성유물 옵션에서 필요한 정보가 들어있는 부분
            if j in [4, 5, 6, 8] :
                option = options[j].text
                # 옵션이 여러 개일 경우, 줄바꿈으로 구분하기 때문에 이를 / 구분으로 변경
                if '\n' in option :
                    option = option.replace('\n', ' / ')
                Option.append(option)
        # 권장 성유물의 옵션만 담는 부분
        Information.loc[total_index] = Option
        total_index = total_index+1
        
        # 추천 성유물 세트 및 상세 설명 수집 과정
        sets = sung.find_elements(By.CLASS_NAME, 'W078FM6Z')
        # 성유물 세트는 캐릭터마다 여러 개 존재하기 때문에 이를 구분하기 위한 부분
        character_number = 1
        for j in range(len(sets)) :
            # li로 구분되어 있는데, 그 안에 div가 같이 들어가 있기 때문에 문제가 발생한다.
            relic_info = list(sets[j].text.split('\n'))
            for m in range(len(relic_info)) :
            	# 실제 정보가 들어가 있는 부분
                if m%2 == 1:
                    one_set = relic_info[m-1]
                    set_info =relic_info[m]
                    character_name = Character[k]+'%d' %(character_number)
                    Option = [character_name, one_set, set_info]
                    Relic_Information.loc[relic_index] = Option
                    character_number = character_number+1
                    relic_index = relic_index+1
except Exception as e :
    print(e)
    print(Main_link[k])
        
with pd.ExcelWriter('genshin.xlsx') as writer :
    Information.to_excel(writer, sheet_name='성유물 옵션', index=False)

with pd.ExcelWriter('genshin_set_relic.xlsx') as writer :
    Relic_Information.to_excel(writer, sheet_name='성유물', index=False)

 

  • 두 번째 코드 결과물

 

  • 세 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *

# 원신/성유물 나무위키 링크
link = 'https://namu.wiki/w/%EC%9B%90%EC%8B%A0/%EC%84%B1%EC%9C%A0%EB%AC%BC'

driver = webdriver.Chrome('chromedriver.exe')
driver.get(link)
time.sleep(3)

Relic = pd.DataFrame({'성유물 세트' : [], '2세트' : [], '4세트' : [], '획득처' : [], '비경' : []})
total_index = 0

# 성유물 세트 효과 수집 과정
info = driver.find_elements(By.CLASS_NAME, 'TiHaw-AK._6803dcde6a09ae387f9994555e73dfd7')
for i in range(len(info)) :
    # 첫 번째 성유물이 검투사의 피날레이기 때문에 해당 부분이 기준
    # 여기서부터 끝까지가 성유물에 대한 정보가 존재
    if '검투사' in info[i].text :
        index_start = i
        break
# 전체적으로 3단위로 원하는 정보가 있음
for i in range(index_start, len(info), 3) :
    relic_info = info[i].text.split('\n')
    # 1세트 효과가 있는 4성 성유물은 생략한다.
    if '모시는 자' in relic_info[0] :
        continue
    # 획득처에서 비경을 구분하는 과정
    if '비경' in  relic_info[7] :
        place_index_start = relic_info[7].index(':')
        place = relic_info[7][place_index_start+2:]
        if ',' in place :
            place_end_index = place.index(',')
            place = place[:place_end_index]
    else :
        place = ''
    relic = [relic_info[0], relic_info[3], relic_info[5], relic_info[7], place]
    Relic.loc[total_index] = relic
    total_index = total_index+1

with pd.ExcelWriter('genshin_relic.xlsx') as writer :
    Relic.to_excel(writer, sheet_name='성유물', index=False)

 

  • 세 번째 코드 결과물

 

해당 데이터를 활용하여 원신 캐릭터의 성유물을 엑셀에서 쉽게 조회하는 포스팅은 아래에서 확인해주세요!

https://yhj9855.com/entry/%EC%9B%90%EC%8B%A0-%EC%84%B1%EC%9C%A0%EB%AC%BC-%EC%84%B8%ED%8C%85-%EC%97%91%EC%85%80%EB%A1%9C-%EC%89%BD%EA%B2%8C-%EB%B3%B4%EA%B8%B0-45-%EC%97%85%EB%8D%B0%EC%9D%B4%ED%8A%B8-%EA%B8%B0%EC%A4%80-%EC%B9%98%EC%98%A4%EB%A6%AC-%ED%8F%AC%ED%95%A8

 

[원신] 성유물 세팅 엑셀로 쉽게 보기 (4.5 업데이트 기준, 치오리 포함)

안녕하세요! 오늘은 원신 4.5 업데이트 모든 캐릭터 성유물 세팅 포스팅을 진행하겠습니다. 4.5 업데이트는 간단한 업데이트여서 호다닥 갖고 왔습니다. 캐릭터의 성유물 세팅은 엑셀 내 저장되

yhj9855.com

 

코드에 대해 궁금한 부분이 있으신 분들은 댓글로 남겨주시면, 답변 드리도록 하겠습니다!

★읽어주셔서 감사합니다★

728x90
반응형
728x90
반응형

안녕하세요! 네이버 뉴스가 24년 1월 25일부터 페이지가 보여주는 방식이 변경되면서, 이전 포스팅에서 진행했던 첫 번째 코드를 사용할 수 없게 되었습니다.

 

그래서 변경된 페이지에서 적용되는 크롤링 코드를 새로 가지고 왔습니다!

※ 두 번째 코드는 동일하게 적용됩니다.

 

해당 포스팅에서는 전체 코드만 첨부합니다.

크롤링할 페이지의 설명, 크롤링 진행 방식, 이전 크롤링 코드가 궁금하신 분들은 아래 링크에서 확인하실 수 있습니다.

https://yhj9855.com/entry/Crawling-%EB%84%A4%EC%9D%B4%EB%B2%84-%EB%89%B4%EC%8A%A4-%ED%81%AC%EB%A1%A4%EB%A7%81-1

 

[Crawling] 네이버 뉴스 크롤링 - 1

안녕하세요. 크롤링에서 가장 첫 포스팅을 네이버 뉴스 크롤링으로 하게 되었어요. 아무래도 바쁜 일상 속에서 매일 뉴스 기사를 파악하는 부분이 시간적으로 힘들었는데, 크롤링하고 데이터

yhj9855.com

 

크롤링의 자세한 과정이 궁금하신 분들은 아래 링크를 봐주시면 됩니다!

 

첫 번째 코드의 자세한 과정은 다음 포스팅에서 진행하겠습니다.

 

<두 번째 코드의 자세한 과정>

https://yhj9855.com/entry/Crawling-%EB%84%A4%EC%9D%B4%EB%B2%84-%EB%89%B4%EC%8A%A4-%ED%81%AC%EB%A1%A4%EB%A7%81-3

 

[Crawling] 네이버 뉴스 크롤링 - 3

안녕하세요. 오늘은 기존에 작성한 네이버 뉴스 크롤링 코드에서 두 번째 코드의 자세한 크롤링 과정을 포스팅 하겠습니다. 네이버 뉴스 크롤링 전체 코드를 확인하고 싶으신 분들은 아래 링크

yhj9855.com


[첫 번째 코드]

전체 코드

import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from openpyxl import *

# 2024.01.25 부터 변경된 네이버 기사를 새로 크롤링하기 위해 만든 코드

link = 'https://news.naver.com/main/list.naver?mode=LS2D&sid2=229&sid1=105&mid=shm&date='
# 스크랩 하고 싶은 날짜를 년도월일 나열
# 날짜를 쉽게 바꾸기 위해 date를 따로 선언
date = '20240205'

# 메인 링크는 링크에 날짜가 붙은 구조이기 때문에 이렇게 작성해준다.
main_link = link + date
# number: 기사의 수, title: 기사 제목, link: 기사 링크
Main_link = pd.DataFrame({'number' : [], 'title' : [], 'link' : []})

# 크롬드라이버 실행
driver = webdriver.Chrome('chromedriver.exe')
driver.get(main_link)
time.sleep(3)

# 기사 더보기 버튼
more_button = driver.find_element(By.CLASS_NAME, 'section_more_inner._CONTENT_LIST_LOAD_MORE_BUTTON')

# 기사 더보기가 몇 개가 있을지 모르기 때문에 오류가 날 때까지 누르는 것으로 한다.
# 여기서 발생하는 오류란 버튼을 찾을 수 없다 즉, 버튼이 없을 때 발생하는 오류
while True :
    try :
        more_button.click()
        time.sleep(3)
    except :
        break

# 기사들의 정보가 담겨져 있는 곳
articles = driver.find_elements(By.CLASS_NAME, 'sa_text_title')
for i in range(len(articles)) :
	# 각 기사의 제목과 링크를 추출
    title = articles[i].text.strip()
    link = articles[i].get_attribute('href')
    li = [i+1, title, link]
    Main_link.loc[i] = li

# 엑셀 파일이 헷갈리지 않기 위해 엑셀 이름에 날짜를 넣음
excel_name = 'news_' + date + '.xlsx'
with pd.ExcelWriter(excel_name) as writer :
    Main_link.to_excel(writer, sheet_name='링크', index=False)

[두 번째 코드]

전체 코드

from bs4 import BeautifulSoup
import requests
import pandas as pd
from openpyxl import *
import time
import urllib

# 첫 번째 코드에서 지정한 뉴스의 링크들이 담긴 파일
link = pd.read_excel('news_20231222.xlsx')
# 엑셀 파일이 헷갈리지 않게 최종 결과파일에도 날짜를 넣어줌
excel_name = 'news_detail_20231222.xlsx'
Main_link = list(link['link'])
# number: 기사의 수, title: 기사의 제목, information: 본문 내용, link: 기사의 링크
Information = pd.DataFrame({'number' : [], 'title' : [], 'information' : [], 'link' : []})
# 본문 내용만 추가하면 되기 때문에 데이터 프레임에 미리 나머지 내용을 담아줌
Information['number'] = link['number']
Information['title'] = link['title']
Information['link'] = link['link']
information = []

for main_link in Main_link :
	# 기사가 전체적으로 2개의 구조를 가지고 있음 (게임/리뷰 카테고리에 한하여)
    # 하나의 구조를 기준으로 삼고, 해당 부분에서 오류가 발생하면 다음 구조의 기사로 판단
    try :
        response = requests.get(main_link, headers={'User-Agent':'Moailla/5.0'})
        if response.status_code == 200 :
            html = response.content
            soup = BeautifulSoup(html, 'html.parser')
            # 기사의 본문 내용만 담고 있는 부분
            info = soup.find('div', {'id' : 'newsct_article'}).text.strip()
            # 기사 내용 데이터 분석을 위해서 줄바꿈을 띄어쓰기로 변경
            info = info.replace('\n', '')
            information.append(info)
    except :
    	# 다른 구조의 기사 크롤링 코드
        # 여기서 오류가 나는 경우는 게임/리뷰 기사가 아닌 다른 카테고리의 기사로 판단
        try :
            response = requests.get(main_link, headers={'User-Agent':'Moailla/5.0'})
            if response.status_code == 200 :
                html = response.content
                soup = BeautifulSoup(html, 'html.parser')
                # 기사의 본문 내용을 담고 있는 부분
                info = soup.find('div', {'id' : 'newsEndContents'}).text.strip()
                info = info.replace('\n', '')
                # 해당 구조의 기사는 기자의 정보가 본문과 무조건 같이 존재
                # 기자의 정보 부분은 필요가 없기 때문에 기자 정보의 기준점이 되는 부분을 찾음
                # 기자의 정보 기준이 기사제공이라는 단어이기 때문에 그 이후는 삭제
                end = info.index('기사제공')
                info = info[:end]
                information.append(info)
        # 다른 카테고리의 기사가 들어올 경우에는 정보를 담지 않는 것으로 함
        except Exception as e :
        	info = ''
            information.append(info)
            # 오류가 발생하는 이유와 발생하는 링크를 출력하여 오류를 확인하는 장치
            #print(e)
            #print(main_link)

Information['information'] = information

with pd.ExcelWriter(excel_name) as writer :
    Information.to_excel(writer, sheet_name='결과값', index=False)

 

뉴스 크롤링 데이터를 이용한 워드클라우드 포스팅은 아래에서 확인해주세요!

https://yhj9855.com/entry/%EB%8D%B0%EC%9D%B4%ED%84%B0-%EB%B6%84%EC%84%9D-%ED%95%9C%EA%B8%80%EB%A1%9C-%EC%9B%8C%EB%93%9C%ED%81%B4%EB%9D%BC%EC%9A%B0%EB%93%9C-%EB%A7%8C%EB%93%A4%EA%B8%B0-feat%EB%84%A4%EC%9D%B4%EB%B2%84-%EB%89%B4%EC%8A%A4-%ED%81%AC%EB%A1%A4%EB%A7%81

 

[데이터 분석] 한글로 워드클라우드 만들기 (feat.네이버 뉴스 크롤링)

안녕하세요. 오늘은 크롤링 데이터로 워드클라우드(wordcloud)를 만드는 방법에 대해 포스팅 하겠습니다. 크롤링 데이터는 네이버 뉴스 크롤링을 사용할 예정입니다! 네이버 뉴스 크롤링 과정이

yhj9855.com

 

뉴스 크롤링 데이터를 이용한 토픽모델링 포스팅은 아래세어 확인해주세요!

https://yhj9855.com/entry/%EB%8D%B0%EC%9D%B4%ED%84%B0-%EB%B6%84%EC%84%9D-%ED%95%9C%EA%B8%80-%EB%8D%B0%EC%9D%B4%ED%84%B0-%ED%86%A0%ED%94%BD-%EB%AA%A8%EB%8D%B8%EB%A7%81-%EC%A7%84%ED%96%89%ED%95%98%EA%B8%B0

 

[데이터 분석] 한글 데이터 토픽 모델링 진행하기

안녕하세요! 오늘은 한글 데이터로 토픽 모델링(topic modeling)을 하는 방법에 대해 포스팅 하겠습니다. 한글 데이터는 네이버 뉴스 크롤링 데이터를 사용할 예정입니다. 네이버 뉴스 크롤링 과정

yhj9855.com

코드에 대해 궁금한 부분이 있으신 분들은 댓글로 남겨주시면, 답변 드리도록 하겠습니다.

★읽어주셔서 감사합니다★

728x90
반응형

+ Recent posts