그렇기 때문에 특정 날짜의 기사들을 크롤링하고 싶다면 date 뒤에 연도+월+일을 붙이면 된다는 사실을 알 수 있습니다.
해당 부분을 코드로 변경하면 아래와 같습니다.
# 수정하고자 하는 메인 링크
link = 'https://news.naver.com/breakingnews/section/105/229?date='
# 스크랩 하고 싶은 날짜를 년도월일 나열해준다.
# 날짜를 쉽게 바꾸기 위해 date를 따로 선언해준다.
date = '20250107'
# 메인 링크는 링크에 날짜가 붙은 구조이기 때문에 이렇게 작성해준다.
main_link = link + date
# 기사의 수, 제목, 링크를 받아올 예정이기 때문에 정보를 담아줄 데이터 프레임을 생성한다.
Main_link = pd.DataFrame({'number' : [], 'title' : [], 'link' : []})
'a' 태그 : 링크가 담겨져 있는 공간이면 해당 태그를 사용합니다. 현재 버튼을 클릭하면 새로운 기사가 등장하기 때문에 해당 태그를 사용했습니다.
href: 링크의 주소를 가지고 있는 부분입니다. 여기서는 #을 사용하여, 페이지를 변동하지 않겠다는 옵션을 지정해주었습니다.
class: 태그의 속성을 나타내는 부분입니다. 크롤링을 진행할 때 많이 사용되는 부분으로 ID가 없을 경우에는 이름처럼 사용되기도 합니다.
data-* : HTML5에서 지원하는 사용자 정의 데이터 속성입니다. 여기서의 옵션은 특정 동작이나 상태를 저장하지 않도록 지시하는 것을 의미합니다.
기사 더보기버튼의 HTMl 구조를 알았으니, 오류가 발생할 때까지 버튼을 클릭하는 코드를 작성합니다.
service = Service('chromedriver.exe')
driver = webdriver.Chrome(service=service)
driver.get(main_link)
# 웹 페이지 로딩을 기다리는 코드로, 초는 더 짧아도 된다.
time.sleep(3)
# 기사 더보기 버튼
more_button = driver.find_element(By.CLASS_NAME, 'section_more_inner._CONTENT_LIST_LOAD_MORE_BUTTON')
# 기사 더보기가 몇 개가 있을지 모르기 때문에 오류가 날 때까지 누르는 것으로 한다.
# 여기서 발생하는 오류란 버튼을 찾을 수 없다 즉, 버튼이 없을 때 발생하는 오류이다.
while True :
try :
more_button.click()
time.sleep(3)
except :
break
위의 코드에서 보면, time.sleep 코드를 사용하는 것을 보실 수 있습니다.
동적 크롤링을 작성하실 때 생각보다 많이 놓치실 수 있는 부분인데요!
동적 크롤링은 코드로 크롬을 띄우고, 직접 웹 페이지에 들어가서 해당 페이지에 있는 내용을 크롤링하는 작업입니다.
그렇기 때문에 웹 페이지 로딩이 되지 않은 상태에서 접근을 시도하면 오류가 발생하는데, 이 때 발생하는 오류가 특정 HTML을 찾을 수 없다는 오류가 발생합니다.
이로 인해 초보자분들께서는 웹 페이지가 로딩이 되지 못했다고 생각을 못하고, 코드 내 오류가 있다고만 생각을 하여 한참 시간을 소모하는 경우를 많이 봤습니다!
이를 방지하기 위해서 time.sleep 명령어를 웹 페이지가 변경될 때마다 꼭 넣어주셔야 합니다.
몇 초를 기다리는지는 웹 페이지 안의 영상, 이미지 여부나 인터넷 속도에 따라서 다르지만 보통 1~5초 사이 라고 보시면 됩니다.
기사의 제목과 링크 가져오기
마지막으로 크롤링 목적인 기사의 제목과 링크를 가져오기만 하면 첫 번째 코드의 크롤링이 완료됩니다!
버튼을 확인했던 것처럼 개발자 도구에서 기사의 제목과 링크가 어떤 HTML 구조를 가지고 있는지 확인해보겠습니다.
# 기사의 제목과 링크가 모두 담긴 a태그를 모두 찾는다.
articles = driver.find_elements(By.CLASS_NAME, 'sa_text_title._NLOG_IMPRESSION')
# a태그 내 기사의 제목과 링크를 따로 저장한다.
for i in range(len(articles)) :
# 기사의 제목
# strip을 사용하여 눈으로 확인할 수 없는 양 끝의 공백을 제거한다.
title = articles[i].text.strip()
# href 부분을 가져온느 방법
# a태그 내 href를 가져온다.
link = articles[i].get_attribute('href')
# 번호는 0부터 시작하기 때문에 1을 더해준다.
li = [i+1, title, link]
Main_link.loc[i] = li
액셀 파일로 저장
이제 크롤링 작업은 완료되었고, 크롤링한 데이터프레임을 엑셀 파일로 저장하도록 하겠습니다.
# 엑셀을 잘 관리하기 위해서 크롤링 날짜를 파일 이름에 포함한다.
excel_name = 'news_' + date + '.xlsx'
with pd.ExcelWriter(excel_name) as writer :
Main_link.to_excel(writer, sheet_name='링크', index=False)
이런 과정을 통해서 특정 날짜의 모든 기사의 제목과 링크를 크롤링하는 코드가 완성되었습니다!!
[전체 코드]
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
import time
from selenium.webdriver.common.by import By
from openpyxl import *
link = 'https://news.naver.com/breakingnews/section/105/229?date='
date = '20250107'
main_link = link + date
Main_link = pd.DataFrame({'number' : [], 'title' : [], 'link' : []})
service = Service('chromedriver.exe')
driver = webdriver.Chrome(service=service)
driver.get(main_link)
time.sleep(3)
more_button = driver.find_element(By.CLASS_NAME, 'section_more_inner._CONTENT_LIST_LOAD_MORE_BUTTON')
while True :
try :
more_button.click()
time.sleep(3)
except :
break
articles = driver.find_elements(By.CLASS_NAME, 'sa_text_title._NLOG_IMPRESSION')
for i in range(len(articles)) :
title = articles[i].text.strip()
link = articles[i].get_attribute('href')
li = [i+1, title, link]
Main_link.loc[i] = li
excel_name = 'news_' + date + '.xlsx'
with pd.ExcelWriter(excel_name) as writer :
Main_link.to_excel(writer, sheet_name='링크', index=False)
이전 코드와 마찬가지로 Xpath, CSS_Selector를 사용하지 않았는데, 해당 부분을 사용하면 쉽게 크롤링을 할 수 있지만 HTML 코드가 복잡하거나 크롤링을 배우고 싶은 분들에게는 좋은 방법이 아니라고 생각합니다.
안녕하세요! 오늘은 원신 나무위키에 플레이어블 캐릭터와 성유물 카테고리의 글을 크롤링하는 코드에 대해 포스팅 진행하겠습니다.
해당 포스팅에서는 전체 코드와 결과물 이미지만 첨부합니다.
크롤링의 자세한 과정은 추후에 포스팅 진행하도록 하겠습니다.
해당 크롤링은 원신 각 캐릭터의 성유물 추천 옵션과 세트를 빠르게 파악하기 위한 데이터 수집을 목적으로 하고 있습니다!
나무위키에서 수집할 정보는 아래와 같습니다.
※ 사진 속 정보는 나히다를 예시로 한 것입니다.
1. 캐릭터의 이름, 속성, 무기
2. 권장 성유물 옵션
3. 추천 성유물 세트 및 설명
4. 성유물 이름, 세트 효과, 획득처
크롤링 진행 방식
크롤링은 총 3개의 코드로 진행을 합니다.
첫 번째 코드
원신 캐릭터의 상세 정보가 담긴 링크를 전부 긁어옵니다.
캐릭터의 이름과 링크만 저장하여 하나의 엑셀 파일로 저장합니다.
두 번째 코드
첫 번째 코드에서 저장한 엑셀 파일에서 각 캐릭터의 상세 정보 링크를 가져옵니다.
캐릭터의 속성, 무기, 권장 성유물 옵션, 추천 성유물 세트 및 상세 설명의 내용을 가지고 옵니다.
캐릭터의 이름, 속성, 무기 권장 성유물 옵션을 저장하여 하나의 엑셀 파일로 저장합니다.
캐릭터의 이름, 추천 성유물 세트, 상세 설명을 저장하여 하나의 엑셀 파일로 저장합니다.
엑셀 파일을 두 개로 나눈 이유는 이후에 원신 캐릭터 성유물을 조회하는 엑셀 파일을 쉽게 만들기 위해서 입니다!
세번째 코드
성유물 세트 이름, 2세트, 4세트, 획득처의 내용을 가지고 옵니다.
획득처에서 비경의 이름을 분리합니다.
성유물 세트 이름, 2세트, 4세트, 획득처, 비경의 이름을 저장하여 하나의 엑셀 파일로 저장합니다.
비경 이름을 분리한 이유는 이후 원신 캐릭터 성유물을 조회하는 엑셀 파일을 쉽게 만들기 위해서 입니다!
[실제 코드 및 결과물]
첫 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *
# 원신/캐릭터 나무위키 링크
link = 'https://namu.wiki/w/%EC%9B%90%EC%8B%A0/%EC%BA%90%EB%A6%AD%ED%84%B0'
# 나무위키는 BeautifulSoup이 먹히지 않기 때문에 동적 크롤링으로 진행
driver = webdriver.Chrome('chromedriver.exe')
driver.get(link)
time.sleep(3)
# '원소별' 버튼 클릭
button = list(driver.find_elements(By.CLASS_NAME, "_3xTXXXtF"))
button[1].click()
time.sleep(3)
Character = pd.DataFrame({'캐릭터 이름' : [], '링크' : []})
character_info = driver.find_elements(By.CLASS_NAME, "s3zppxXT")
for i in range(len(character_info)) :
character = character_info[i]
# 캐릭터 이름만 담기 위해서 데이터를 정제하는 부분
# 캐릭터의 소개가 끝나는 부분
if character.text == '취소선' :
break
# 주인공 캐릭터인 아이테르와 루미네는 데이터 수집에서 제외
# 캐릭터 이름이 아닌데, 들어온 정보는 모두 제외
if character.text == '' or '원신' in character.text or '아이테르' in character.text or character.text in ['불', '물', '바람', '번개', '풀', '얼음', '바위'] :
pass
else :
# 캐릭터의 이름
name = character.text
# 캐릭터의 이름이 길 경우, 엔터로 구분이 되어있기 때문에 이를 띄어쓰기로 변경
if '\n' in name :
name = name.replace('\n', ' ')
Char = [name, str(character.get_attribute('href'))]
Character.loc[i] = Char
with pd.ExcelWriter('genshin_link.xlsx') as writer :
Character.to_excel(writer, sheet_name='링크', index=False)
첫 번째 코드 결과물
두 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *
# 캐릭터의 이름과 상세정보 링크가 담긴 엑셀 파일
link = pd.read_excel('genshin_link.xlsx')
Main_link = list(link['링크'])
Character = list(link['캐릭터 이름'])
Information = pd.DataFrame({'캐릭터 이름' : [], '무기' : [], '시간의 모래' : [], '공간의 성배' : [], '이성의 왕관' : [], '부옵션' : []})
Relic_Information = pd.DataFrame({'캐릭터 이름' : [], '성유물' : [], '평가': []})
driver = webdriver.Chrome('chromedriver.exe')
# 엑셀 전체 인덱스를 의미
# 저장할 엑셀이 두 개이기 때문에 인덱스도 두 개가 필요
total_index = 0
relic_index = 0
# 특정 캐릭터의 상세정보에서 오류가 발생할 경우을 대비
try :
for k in range(len(Main_link)) :
driver.get(Main_link[k])
time.sleep(3)
# 캐릭터의 무기 수집 과정
attack = driver.find_elements(By.CLASS_NAME, 'cIflhYhI')
for i in range(len(attack)) :
if '무기' == attack[i].text :
attack_index = i+1
break
weapon = attack[attack_index].text
# 캐릭터의 성유물 수집 과정
info = driver.find_elements(By.CLASS_NAME, 'D7SMSdcV')
for i in range(len(info)) :
# 권장 성유물 옵션을 파악하기 위해 위치를 저장
if '권장 성유물' in info[i].text :
index = i
break
# 권성유물의 정보가 담긴 공간
sung = info[index]
# 권장 성유물 옵션 수집 과정
options = sung.find_elements(By.CLASS_NAME, 'cIflhYhI')
Option = [Character[k], weapon]
for j in range(len(options)) :
# 권장 성유물 옵션에서 필요한 정보가 들어있는 부분
if j in [4, 5, 6, 8] :
option = options[j].text
# 옵션이 여러 개일 경우, 줄바꿈으로 구분하기 때문에 이를 / 구분으로 변경
if '\n' in option :
option = option.replace('\n', ' / ')
Option.append(option)
# 권장 성유물의 옵션만 담는 부분
Information.loc[total_index] = Option
total_index = total_index+1
# 추천 성유물 세트 및 상세 설명 수집 과정
sets = sung.find_elements(By.CLASS_NAME, 'W078FM6Z')
# 성유물 세트는 캐릭터마다 여러 개 존재하기 때문에 이를 구분하기 위한 부분
character_number = 1
for j in range(len(sets)) :
# li로 구분되어 있는데, 그 안에 div가 같이 들어가 있기 때문에 문제가 발생한다.
relic_info = list(sets[j].text.split('\n'))
for m in range(len(relic_info)) :
# 실제 정보가 들어가 있는 부분
if m%2 == 1:
one_set = relic_info[m-1]
set_info =relic_info[m]
character_name = Character[k]+'%d' %(character_number)
Option = [character_name, one_set, set_info]
Relic_Information.loc[relic_index] = Option
character_number = character_number+1
relic_index = relic_index+1
except Exception as e :
print(e)
print(Main_link[k])
with pd.ExcelWriter('genshin.xlsx') as writer :
Information.to_excel(writer, sheet_name='성유물 옵션', index=False)
with pd.ExcelWriter('genshin_set_relic.xlsx') as writer :
Relic_Information.to_excel(writer, sheet_name='성유물', index=False)
두 번째 코드 결과물
세 번째 코드
import pandas as pd
from selenium import webdriver
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as E
from openpyxl import *
# 원신/성유물 나무위키 링크
link = 'https://namu.wiki/w/%EC%9B%90%EC%8B%A0/%EC%84%B1%EC%9C%A0%EB%AC%BC'
driver = webdriver.Chrome('chromedriver.exe')
driver.get(link)
time.sleep(3)
Relic = pd.DataFrame({'성유물 세트' : [], '2세트' : [], '4세트' : [], '획득처' : [], '비경' : []})
total_index = 0
# 성유물 세트 효과 수집 과정
info = driver.find_elements(By.CLASS_NAME, 'TiHaw-AK._6803dcde6a09ae387f9994555e73dfd7')
for i in range(len(info)) :
# 첫 번째 성유물이 검투사의 피날레이기 때문에 해당 부분이 기준
# 여기서부터 끝까지가 성유물에 대한 정보가 존재
if '검투사' in info[i].text :
index_start = i
break
# 전체적으로 3단위로 원하는 정보가 있음
for i in range(index_start, len(info), 3) :
relic_info = info[i].text.split('\n')
# 1세트 효과가 있는 4성 성유물은 생략한다.
if '모시는 자' in relic_info[0] :
continue
# 획득처에서 비경을 구분하는 과정
if '비경' in relic_info[7] :
place_index_start = relic_info[7].index(':')
place = relic_info[7][place_index_start+2:]
if ',' in place :
place_end_index = place.index(',')
place = place[:place_end_index]
else :
place = ''
relic = [relic_info[0], relic_info[3], relic_info[5], relic_info[7], place]
Relic.loc[total_index] = relic
total_index = total_index+1
with pd.ExcelWriter('genshin_relic.xlsx') as writer :
Relic.to_excel(writer, sheet_name='성유물', index=False)
세 번째 코드 결과물
해당 데이터를 활용하여 원신 캐릭터의 성유물을 엑셀에서 쉽게 조회하는 포스팅은 아래에서 확인해주세요!
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
import time
from selenium.webdriver.common.by import By
from openpyxl import *
# 2024.01.25 부터 변경된 네이버 기사를 새로 크롤링하기 위해 만든 코드
link = 'https://news.naver.com/breakingnews/section/105/229?date='
# 스크랩 하고 싶은 날짜를 년도월일 나열해준다.
# 날짜를 쉽게 바꾸기 위해 date를 따로 선언해준다.
date = '20250107'
# 메인 링크는 링크에 날짜가 붙은 구조이기 때문에 이렇게 작성해준다.
main_link = link + date
Main_link = pd.DataFrame({'number' : [], 'title' : [], 'link' : []})
# Selenium 4 버전 이상 부터는 해당 방법으로 사용해야 driver 인식이 된다.
service = Service('chromedriver.exe')
driver = webdriver.Chrome(service=service)
driver.get(main_link)
time.sleep(3)
# 기사 더보기 버튼
more_button = driver.find_element(By.CLASS_NAME, 'section_more_inner._CONTENT_LIST_LOAD_MORE_BUTTON')
# 기사 더보기가 몇 개가 있을지 모르기 때문에 오류가 날 때까지 누르는 것으로 한다.
# 여기서 발생하는 오류란 버튼을 찾을 수 없다 즉, 버튼이 없을 때 발생하는 오류이다.
while True :
try :
more_button.click()
time.sleep(3)
except :
break
articles = driver.find_elements(By.CLASS_NAME, 'sa_text_title._NLOG_IMPRESSION')
for i in range(len(articles)) :
title = articles[i].text.strip()
link = articles[i].get_attribute('href')
li = [i+1, title, link]
Main_link.loc[i] = li
excel_name = 'news_' + date + '.xlsx'
with pd.ExcelWriter(excel_name) as writer :
Main_link.to_excel(writer, sheet_name='링크', index=False)
[두 번째 코드]
전체 코드
from bs4 import BeautifulSoup
import requests
import pandas as pd
from openpyxl import *
import time
import urllib
# 첫 번째 코드에서 지정한 뉴스의 링크들이 담긴 파일
link = pd.read_excel('news_20231222.xlsx')
# 엑셀 파일이 헷갈리지 않게 최종 결과파일에도 날짜를 넣어줌
excel_name = 'news_detail_20231222.xlsx'
Main_link = list(link['link'])
# number: 기사의 수, title: 기사의 제목, information: 본문 내용, link: 기사의 링크
Information = pd.DataFrame({'number' : [], 'title' : [], 'information' : [], 'link' : []})
# 본문 내용만 추가하면 되기 때문에 데이터 프레임에 미리 나머지 내용을 담아줌
Information['number'] = link['number']
Information['title'] = link['title']
Information['link'] = link['link']
information = []
for main_link in Main_link :
# 기사가 전체적으로 2개의 구조를 가지고 있음 (게임/리뷰 카테고리에 한하여)
# 하나의 구조를 기준으로 삼고, 해당 부분에서 오류가 발생하면 다음 구조의 기사로 판단
try :
response = requests.get(main_link, headers={'User-Agent':'Moailla/5.0'})
if response.status_code == 200 :
html = response.content
soup = BeautifulSoup(html, 'html.parser')
# 기사의 본문 내용만 담고 있는 부분
info = soup.find('div', {'id' : 'newsct_article'}).text.strip()
# 기사 내용 데이터 분석을 위해서 줄바꿈을 띄어쓰기로 변경
info = info.replace('\n', '')
information.append(info)
except :
# 다른 구조의 기사 크롤링 코드
# 여기서 오류가 나는 경우는 게임/리뷰 기사가 아닌 다른 카테고리의 기사로 판단
try :
response = requests.get(main_link, headers={'User-Agent':'Moailla/5.0'})
if response.status_code == 200 :
html = response.content
soup = BeautifulSoup(html, 'html.parser')
# 기사의 본문 내용을 담고 있는 부분
info = soup.find('div', {'id' : 'newsEndContents'}).text.strip()
info = info.replace('\n', '')
# 해당 구조의 기사는 기자의 정보가 본문과 무조건 같이 존재
# 기자의 정보 부분은 필요가 없기 때문에 기자 정보의 기준점이 되는 부분을 찾음
# 기자의 정보 기준이 기사제공이라는 단어이기 때문에 그 이후는 삭제
end = info.index('기사제공')
info = info[:end]
information.append(info)
# 다른 카테고리의 기사가 들어올 경우에는 정보를 담지 않는 것으로 함
except Exception as e :
info = ''
information.append(info)
# 오류가 발생하는 이유와 발생하는 링크를 출력하여 오류를 확인하는 장치
#print(e)
#print(main_link)
Information['information'] = information
with pd.ExcelWriter(excel_name) as writer :
Information.to_excel(writer, sheet_name='결과값', index=False)
저는 2024년 01월 17일 네이버 게임/리뷰 카테고리의 기사 크롤링 데이터를 불러와 정제를 진행하도록 하겠습니다.
# 파일 이름만 적을 때는 파일이 실행 파일과 같은 곳에 저장되어 있어야 한다.
result = pd.read_excel('파일 이름')
# 기사의 제목 데이터
Title = list(result['title'])
# 기사의 내용 데이터
Information = list(result['information'])
# 기사의 제목과 내용을 하나의 리스트에 담았다.
Total = []
for i in range(len(result)) :
Total.append(Title[i]+' '+Information[i])
※ Total 데이터의 양이 너무 많아서 데이터 확인은 진행하지 않겠습니다.
명사로 데이터 분류하기
토픽을 제대로 분류하기 위해서는 데이터를 의미 있는 데이터만 남기는 것이 중요합니다.
그 중 가장 빠른 방법이 명사인 데이터만 남기는 것인데요.
명사로 분류를 하지 않을 경우, '있다', '있는' 과 같이 보기만 하면 이해하지 못하는 단어들이 높은 비중을 차지하는 경우가 많기 때문에 제대로 데이터 분석이 되지 않는 경우가 많이 발생합니다.
명사로 분류하기 위해 Konpy 라이브러리를 사용하려고 하는데요.
Konply가 지원하는 형태소 분석 중 저는 Komoran을 사용하였습니다.
Konply이 지원하는 다른 형태소 분석은 추후에 포스팅 진행하도록 하겠습니다!
명사로 형태소 분석을 하는 코드는 아래와 같습니다.
# 형태소 분석기로 Komoran을 사용
komoran = Komoran()
# Total 데이터를 명사로 분류한 후에 띄어쓰기로 붙여넣기 진행
# 줄바꿈으로 진행하도 상관없으나, 줄바꿈으로 진행 시, 이후 띄어쓰기 대신 모두 줄바꿈으로 변경해야한다.
total_nouns = [' '.join(komoran.nouns(doc)) for doc in Total]
추가 전처리 진행하기
total_nouns 데이터는 이제 명사로만 이루어진 데이터입니다.
그대로 토픽 모델링을 진행해도 되지만, 생각보다 의미 없는 데이터가 많이 존재하기 때문에 추가적으로 데이터 전처리를 진행해주는 것이 좋습니다.
예를 들면 '것', '이', '등' 과 같은 단어를 삭제하기 위해서 두 글자 명사만 넣어준다거나, 특정 카테고리의 뉴스이기 때문에 자주 등장하는 명사는 제거한다거나, 기업의 이름들이 명사로 이상하게 분류되어 있는 부분을 원래 기업 이름으로 변경을 해준다거나 하는 방법으로 데이터 전처리를 진행해주시면 됩니다.
제가 진행한 전처리 코드는 아래와 같습니다.
# 추가 데이터 전처리 과정
for i in range(len(total_nouns)) :
# 자주 등장하는 단어들을 꾸준히 붙여준다. (기업 이름 등)
# total_nouns[i]]가 하나의 문자열이기 때문에 reaplace를 통해 변경한다.
total_nouns[i] = total_nouns[i].replace('위 메이드', '위메이드')
total_nouns[i] = total_nouns[i].replace('위 믹스', '위믹스')
total_nouns[i] = total_nouns[i].replace('컴투스 홀', '컴투스홀딩스')
total_nouns[i] = total_nouns[i].replace('개발 사', '개발사')
total_nouns[i] = total_nouns[i].replace('펄 어비스', '펄어비스')
total_nouns[i] = total_nouns[i].replace('콜 라보', '콜라보')
total_nouns[i] = total_nouns[i].replace('카 테 고리', '카테고리')
total_nouns[i] = total_nouns[i].replace('확률 형', '확률형')
total_nouns[i] = total_nouns[i].replace('역대 급', '역대급')
total_nouns[i] = total_nouns[i].replace('마비 노기', '마비노기')
total_nouns[i] = total_nouns[i].replace('게임 위', '게임위')
total_nouns[i] = total_nouns[i].replace('컬 래 버 레이 션', '콜라보레이션')
total_nouns[i] = total_nouns[i].replace('콜 라보 레이 션', '콜라보레이션')
total_nouns[i] = total_nouns[i].replace('빅 게임', '빅게임')
total_nouns[i] = total_nouns[i].replace('엔 씨', '엔씨')
total_nouns[i] = total_nouns[i].replace('스타트 업', '스타트업')
total_nouns[i] = total_nouns[i].replace('디바 이스', '디바이스')
total_nouns[i] = total_nouns[i].replace('선택 지', '선택지')
total_nouns[i] = total_nouns[i].replace('치지 직', '치지직')
total_nouns[i] = total_nouns[i].replace('어 플리 케이 션', '어플리케이션')
total_nouns[i] = total_nouns[i].replace('게임 쇼', '게임쇼')
total_nouns[i] = total_nouns[i].replace('아스 달', '아스달')
total_nouns[i] = total_nouns[i].replace('김실 장', '김실장')
total_nouns[i] = total_nouns[i].replace('행 안부', '행안부')
# 게임 뉴스이기 때문에 게임과 관련된 부분, 뉴스와 관련된 부분은 제거한다.
total_nouns[i] = total_nouns[i].replace('게임', '')
total_nouns[i] = total_nouns[i].replace('기자', '')
total_nouns[i] = total_nouns[i].replace('기사', '')
total_nouns[i] = total_nouns[i].replace('진행', '')
total_nouns[i] = total_nouns[i].replace('이용자', '')
total_nouns[i] = total_nouns[i].replace('플레이', '')
total_nouns[i] = total_nouns[i].replace('이번', '')
# 매일매일 기사에서 반복되는 단어들을 삭제한다.
# 의미가 없는 단어들은 아니지만, 지속적으로 나오면서 의미를 부여하기 어려운 단어가 되었다.
total_nouns[i] = total_nouns[i].replace('지난해', '')
total_nouns[i] = total_nouns[i].replace('전년', '')
total_nouns[i] = total_nouns[i].replace('콘텐츠', '')
total_nouns[i] = total_nouns[i].replace('출시', '')
total_nouns[i] = total_nouns[i].replace('서비스', '')
total_nouns[i] = total_nouns[i].replace('모바일', '')
total_nouns[i] = total_nouns[i].replace('제공', '')
total_nouns[i] = total_nouns[i].replace('예정', '')
# 단어가 두 글자 이상인 것만 토픽 모델링을 진행할 데이터에 넣어준다.
a = total_nouns[i].split(' ')
data = ''
for j in a :
if len(j) >= 2 :
# 동일한 이유로 띄어쓰기로 붙여 넣는다.
# 마찬가지로 줄바꿈으로 진행해도 된다.
data = data+' '+j
total_nouns[i] = data
저는 total_nouns의 일부를 확인하고 진행을 하고 있기 때문에 여러분들은 여러분들의 데이터에 맞게 전처리를 진행하시면 됩니다!
LDA 모델에 학습하기 알맞게 데이터 변형하기
데이터 전처리가 끝난 후에는 LDA 모델에 학습하기 알맞게 데이터를 변형해야 합니다.
데이터를 변형하는 코드는 아래와 같습니다.
# CountVectorizer 객체 생성
# CountVectorizer는 문서에서 단어의 빈도수를 계산하는 도구이다.
CV_vectorizer = CountVectorizer()
# total_nouns에 있는 단어의 빈도수를 행렬로 변경한다.
X = CV_vectorizer.fit_transform(total_nouns)
LDA 모델 생성 및 데이터 학습
이제 데이터가 완성되었으니, LDA 모델을 만들어 데이터를 학습시키도록 하겠습니다!!
LDA 모델을 만드는 코드는 아래와 같습니다.
# 토픽의 개수를 지정한다.
num_topics = 6
# LDA 모델을 생성한다.
# 동일한 결과물을 얻기 위해서 random_state(난수)를 42로 고정한다.
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
# 위에서 만든 데이터 X를 LDA 모델에 학습을 시킨다.
# 이제 lda는 데이터 X가 6개의 토픽으로 분류된 정보가 담겨있다.
lda.fit(X)
각 토픽 내 주요 키워드 찾기
토픽으로 분류를 완료하였으니, 각 토픽이 어떤 키워드를 가지고 있는지 확인해보도록 하겠습니다.
저는 각 토픽마다 7개의 키워드를 추출해서 데이터 프레임을 새로 만들었습니다!
키워드의 수는 원하는대로 지정하시면 됩니다.
키워드를 추출하는 코드는 아래와 같습니다.
# CountVectorizer를 통해 추출된 단어의 목록을 얻는다.
# 단어의 목록은 array로 저장되어 있다.
CV_feature_names = CV_vectorizer.get_feature_names_out()
# 각 토픽의 키워드를 담을 리스트
# 여기에 초기화를 진행해주지 않으면, 다른 날짜의 기사를 진행할 때 진행이 잘 되지 않을 수 있다.
topic_keywords = []
# 토픽 수를 구분하는 변수
topic_index = 1
# 키워드 수를 구분하는 변수
# 키워드 수를 변경하고 싶다면, 숫자를 원하는 키워드 수로 변경하면 된다.
num_word = 7
# lda.components_가 이중 array로 되어 있기 때문에 데이터를 쉽게 다루기 위해수 enumerate로 데이터를 가져온다.
for topic_idx, topic in enumerate(lda.components_):
# topic에는 단어의 빈도 확률이 들어있기 때문에 가장 높은 빈도 확률 7개의 인덱스를 추출한다.
top_keywords_idx = topic.argsort()[::-1][:num_word]
# 단어 목록에서 빈도 확률과 동일한 인덱스를 가진 단어를 추출한다.
top_keywords = [CV_feature_names[i] for i in top_keywords_idx]
# 토픽을 구분하는 값을 맨 앞에 삽입해준다.
top_keywords.insert(0, 'Topic %d' %(topic_index))
topic_index = topic_index+1
topic_keywords.append(top_keywords)
# 추출한 7개의 키워드를 데이터 프레임으로 변경한다.
df_topic_keywords = pd.DataFrame(topic_keywords, columns=["Topic"]+ [f"Keyword {i+1}" for i in range(num_word)])
이렇게 만들어진 df_topic_keywords의 결과물은 아래와 같습니다!
저는 6개의 토픽과 7개의 키워드로 진행을 했기 때문에 이런 결과가 나왔습니다.
실제 토픽의 수와 비슷할수록 정확하게 토픽을 구분하지만, 실제 토픽의 수를 알 수 없으니 다양하게 해보시길 바랍니다.
전체코드
import pandas as pd
from konlpy.tag import *
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
result = pd.read_excel('파일 이름')
Title = list(result['title'])
Information = list(result['information'])
Total = []
for i in range(len(result)) :
Total.append(Title[i]+' '+Information[i])
komoran = Komoran()
total_nouns = [' '.join(komoran.nouns(doc)) for doc in Total]
# 전처리 과정
for i in range(len(total_nouns)) :
total_nouns[i] = total_nouns[i].replace('위 메이드', '위메이드')
total_nouns[i] = total_nouns[i].replace('위 믹스', '위믹스')
total_nouns[i] = total_nouns[i].replace('컴투스 홀', '컴투스홀딩스')
total_nouns[i] = total_nouns[i].replace('개발 사', '개발사')
total_nouns[i] = total_nouns[i].replace('펄 어비스', '펄어비스')
total_nouns[i] = total_nouns[i].replace('콜 라보', '콜라보')
total_nouns[i] = total_nouns[i].replace('카 테 고리', '카테고리')
total_nouns[i] = total_nouns[i].replace('확률 형', '확률형')
total_nouns[i] = total_nouns[i].replace('역대 급', '역대급')
total_nouns[i] = total_nouns[i].replace('마비 노기', '마비노기')
total_nouns[i] = total_nouns[i].replace('게임 위', '게임위')
total_nouns[i] = total_nouns[i].replace('컬 래 버 레이 션', '콜라보레이션')
total_nouns[i] = total_nouns[i].replace('콜 라보 레이 션', '콜라보레이션')
total_nouns[i] = total_nouns[i].replace('빅 게임', '빅게임')
total_nouns[i] = total_nouns[i].replace('엔 씨', '엔씨')
total_nouns[i] = total_nouns[i].replace('스타트 업', '스타트업')
total_nouns[i] = total_nouns[i].replace('디바 이스', '디바이스')
total_nouns[i] = total_nouns[i].replace('선택 지', '선택지')
total_nouns[i] = total_nouns[i].replace('치지 직', '치지직')
total_nouns[i] = total_nouns[i].replace('어 플리 케이 션', '어플리케이션')
total_nouns[i] = total_nouns[i].replace('게임 쇼', '게임쇼')
total_nouns[i] = total_nouns[i].replace('아스 달', '아스달')
total_nouns[i] = total_nouns[i].replace('김실 장', '김실장')
total_nouns[i] = total_nouns[i].replace('행 안부', '행안부')
total_nouns[i] = total_nouns[i].replace('게임', '')
total_nouns[i] = total_nouns[i].replace('기자', '')
total_nouns[i] = total_nouns[i].replace('기사', '')
total_nouns[i] = total_nouns[i].replace('진행', '')
total_nouns[i] = total_nouns[i].replace('이용자', '')
total_nouns[i] = total_nouns[i].replace('플레이', '')
total_nouns[i] = total_nouns[i].replace('이번', '')
total_nouns[i] = total_nouns[i].replace('지난해', '')
total_nouns[i] = total_nouns[i].replace('전년', '')
total_nouns[i] = total_nouns[i].replace('콘텐츠', '')
total_nouns[i] = total_nouns[i].replace('출시', '')
total_nouns[i] = total_nouns[i].replace('서비스', '')
total_nouns[i] = total_nouns[i].replace('모바일', '')
total_nouns[i] = total_nouns[i].replace('제공', '')
total_nouns[i] = total_nouns[i].replace('예정', '')
a = total_nouns[i].split(' ')
data = ''
for j in a :
if len(j) >= 2 :
data = data+' '+j
total_nouns[i] = data
CV_vectorizer = CountVectorizer()
X = CV_vectorizer.fit_transform(total_nouns)
num_topics = 6
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
lda.fit(X)
CV_feature_names = CV_vectorizer.get_feature_names_out()
topic_keywords = []
topic_index = 1
num_word = 7
for topic_idx, topic in enumerate(lda.components_):
top_keywords_idx = topic.argsort()[::-1][:num_word]
top_keywords = [CV_feature_names[i] for i in top_keywords_idx]
top_keywords.insert(0, 'Topic %d' %(topic_index))
topic_index = topic_index+1
topic_keywords.append(top_keywords)
df_topic_keywords = pd.DataFrame(topic_keywords, columns=["Topic"]+ [f"Keyword {i+1}" for i in range(num_word)])
활용하기
제가 개인적으로 토픽 모델링과 다른 시각화를 활용하여 네이버 기사를 분석한 예시입니다.
예시에서 활용한 파이 차트 및 바 차트, 네트워트 분석은 다음 포스팅에서 진행하겠습니다!!
# cmd 창에서 wordcloud 라이브러리 설치
pip install wordcloud
데이터 로드 후 정제하기
필요한 라이브러리를 설치한 후에는 pandas를 사용하여 데이터를 불러옵니다.
저는 2024년 01월 17일 네이버 게임/리뷰 카테고리의 기사 크롤링 데이터를 불러와 정제를 진행하도록 하겠습니다.
result = pd.read_excel('news_detail_20240117.xlsx')
# 기사의 제목 데이터
Title = list(result['title'])
# 기사의 내용 데이터
Information = list(result['information'])
Total = []
# 기사의 제목과 내용을 하나의 리스트에 담았다.
for i in range(len(result)) :
Total.append(Title[i]+' '+Information[i])
※ Total 데이터의 양이 너무 많아서 데이터 확인은 진행하지 않겠습니다.
명사로 데이터 분류하기
워드 클라우드를 만들기 위해서는 데이터를 의미 있는 데이터만 남겨야 합니다.
그 중 가장 빠른 방법이 명사인 데이터만 남기는 것인데요.
생각보다 동사는 '이다', '한다', '있다', '었다' 와 같이 보기만 하면 이해하지 못하는 단어의 빈도수가 높은 경우가 많습니다.
그 외에 다른 형태소를 사용하거나, 범위를 넓힐 경우 워드 클라우드로 만들었을 때, 깔끔하게 나오지 않는 경우가 많아 명사로 진행하도록 하겠습니다.
Konply가 지원하는 형태소 분석 종류가 몇 가지 있는데, 저는 그 중에서 Komoran을 사용하였습니다.
다른 종류나 종류별 차이에 대한 포스팅은 추후에 진행하도록 하겠습니다!
명사로 형태소 분석을 하는 코드는 아래와 같습니다.
# 형태소 분석기로 Komoran을 사용
komoran = Komoran()
# Total 데이터를 명사로 분류한 후에 띄어쓰기로 붙여넣기 진행
# 줄바꿈으로 진행해도 상관없으나, 보기에 띄어쓰기가 더 편하기 때문에 띄어쓰기로 진행
total_nouns = [' '.join(komoran.nouns(doc)) for doc in Total]
추가 전처리 진행하기
total_nouns 데이터는 이제 명사로만 이루어진 데이터입니다.
그대로 워드 클라우드로 진행을 해도 되지만, 생각보다 의미 없는 데이터가 워드 클라우드에 들어가는 경우가 많기 때문에 추가적으로 데이터 전처리를 진행하는 것이 좋습니다.
예를 들면 한 글자 '것', '이', '등' 이런 단어의 빈도수가 높은 경우가 많기 때문에 두 글자 명사만 데이터를 넣어준다거나, 특정 카테고리의 뉴스이기 때문에 자주 등장하는 명사는 제거한다거나 하는 방법으로 데이터 전처리를 진행해주시면 됩니다.
제가 진행한 전처리 코드는 아래와 같습니다.
# 추가 데이터 전처리 과정
for i in range(len(total_nouns)) :
# 게임 뉴스이기 때문에 게임과 관련된 부분, 뉴스와 관련된 부분은 제거한다.
# total_nouns[i]가 하나의 문자열이기 때문이 replace를 통해 제거한다.
total_nouns[i] = total_nouns[i].replace('게임', '')
total_nouns[i] = total_nouns[i].replace('기자', '')
total_nouns[i] = total_nouns[i].replace('기사', '')
total_nouns[i] = total_nouns[i].replace('진행', '')
total_nouns[i] = total_nouns[i].replace('이용자', '')
total_nouns[i] = total_nouns[i].replace('플레이', '')
total_nouns[i] = total_nouns[i].replace('이번', '')
# 단어를 구분해야 하기 때문에 띄어쓰기로 나누어준다.
# 만약 줄바꿈으로 데이터를 붙여 넣었다면, 줄바꿈으로 나누어주어야 한다.
a = total_nouns[i].split(' ')
# 단어가 두 글자 이상인 것만 워드 클라우드를 진행할 데이터에 넣어준다.
data = ''
for j in a :
if len(j) >= 2 :
# 이전 코드와 동일한 이유로 띄어쓰기로 붙여 넣는다.
# 마찬가지로 줄바꿈으로 진행해도 상관없다.
data = data+' '+j
total_nouns[i] = data
워드 클라우드 만들기
이제 데이터 전처리가 완료되었으니, 워드 클라우드를 만들어보겠습니다!
워드 클라우드를 만드는 코드는 아래와 같습니다.
# 워드 클라우드를 위한 작업
wordcloud = []
for i in total_nouns :
# 문자열로 된 데이터를 단어로 판단해야 하기 때문에 띄어쓰기로 나눈다.
# 줄바꿈으로 붙여 넣기를 진행했다면, 줄바꿈으로 나누어야 한다.
i = i.split(' ')
# wordcloud라는 리스트에 모든 단어를 넣어준다.
for j in i :
wordcloud.append(j)
# Counter 함수를 사용하여 wordcloud 내 단어와 단어의 수를 wordcloud_data에 dictionary 형태로 저장한다.
wordcloud_data = dict(Counter(wordcloud))
# 워드 클라우드의 모양 이미지 변경하고 싶을 경우 파일 경로를 저장한다.
# 기본 네모로 진행할 경우 해당 부분은 지우면 된다.
Naver = np.array(Image.open("파일 경로"))
# 워드 클라우드의 크기를 결정한다.
plt.figure(figsize=(30,30))
wc = WordCloud( # 워드 클라우드의 모양을 결정한다.
# 기본 네모로 진행할 경우 해당 부분을 지우면 된다.
relative_scaling=0.2,mask = Naver,
# 기본적으로 한글은 지원하지 않기 때문에 한글의 폰트를 지정해야한다.
# 워드 클라우드는 함수 안에서 폰트를 지정하기 때문에 다른 그래프보다 폰트 자유도가 높다.
font_path="폰트 경로",
# 워드 클라우드 배경색
background_color="white",
# 가장 작은 폰트 사이즈
min_font_size=1,
# 가장 큰 폰트 사이즈
max_font_size=50,
# 워드 클라우드 진행하고 싶은 단어의 수
max_words=100,
colormap = 'coolwarm'
).generate_from_frequencies(wordcloud_data)
plt.imshow(wc)
plt.axis('off')
plt.show()
위의 있는 코드로 실행했을 때의 결과물은 아래와 같습니다!
※ 실행할 때마다 색상이 일부 달라지기 때문에 원하는 색상이 나올 때까지 진행하시면 됩니다.
저는 오른쪽 이미지를 사용했기 때문에 해당 모양의 워드 클라우드가 만들어졌습니다.
생각보다 이미지 적용이 잘되기 때문에 원하시는 이미지로 해보시길 바랍니다.
전체코드
import pandas as pd
import numpy as np
from konlpy.tag import *
from collections import Counter
from wordcloud import WordCloud
from wordcloud import ImageColorGenerator
from PIL import Image
import matplotlib.pyplot as plt
result = pd.read_excel('파일 이름')
Title = list(result['title'])
Information = list(result['information'])
Total = []
for i in range(len(result)) :
Total.append(Title[i]+' '+Information[i])
komoran = Komoran()
total_nouns = [' '.join(komoran.nouns(doc)) for doc in Total]
for i in range(len(total_nouns)) :
total_nouns[i] = total_nouns[i].replace('게임', '')
total_nouns[i] = total_nouns[i].replace('기자', '')
total_nouns[i] = total_nouns[i].replace('기사', '')
total_nouns[i] = total_nouns[i].replace('진행', '')
total_nouns[i] = total_nouns[i].replace('이용자', '')
total_nouns[i] = total_nouns[i].replace('플레이', '')
total_nouns[i] = total_nouns[i].replace('이번', '')
a = total_nouns[i].split(' ')
data = ''
for j in a :
if len(j) >= 2 :
data = data+' '+j
total_nouns[i] = data
wordcloud = []
for i in total_nouns :
i = i.split(' ')
for j in i :
wordcloud.append(j)
wordcloud_data = dict(Counter(wordcloud))
Naver = np.array(Image.open("파일 경로"))
plt.figure(figsize=(30,30))
wc = WordCloud( relative_scaling=0.2,mask = Naver,
font_path="폰트 경로",
background_color="white",
min_font_size=1,
max_font_size=50,
max_words=100,
colormap = 'coolwarm'
).generate_from_frequencies(wordcloud_data)
plt.imshow(wc)
plt.axis('off')
plt.show()
활용하기
제가 개인적으로 워드클라우드와 다른 시각화를 활용하여 네이버 기사를 분석한 예시입니다.
예시에서 사용한 파이 차트 및 바 차트, 네트워크 분석은 다음 포스팅에서 진행하겠습니다!!